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Abstract

Recent experiments on URu2Si2 show that the low-pressure hidden
order is non-magnetic but it breaks time reversal invariance. Restricting
our attention to local order parameters of 5f2 shells, we find that the
best candidate for hidden order is staggered order of either T β

z or Txyz oc-
tupoles. Group theoretical arguments for the effect of symmetry-lowering
perturbations (magnetic field, mechanical stress) predict behavior in good
overall agreement with observations. We illustrate our general arguments
on the example of a five-state crystal field model which differs in several
details from models discussed in the literature. The general appearance of
the mean field phase diagram agrees with the experimental results. In par-
ticular, we find that a) at zero magnetic field, there is a first-order phase
boundary between octupolar order and large-moment antiferromagnetism
with increasing hydrostatic pressure; b) arbitrarily weak uniaxial pressure
induces staggered magnetic moments in the octupolar phase; and c) a new
phase with different symmetry appears at large magnetic fields.

1 Introduction

The nature of the so-called ”hidden order” of the T < T0 ≈ 17K phase of
URu2Si2 has long been debated [1]. Taking strictly on-site local order param-
eters only, U4+ → 5f2 shells can carry magnetic dipole, electric quadrupole,
magnetic octupole, and even higher multipole order parameters. The full local
symmetry is described by G = D4h⊗Gt where D4h is the tetragonal point group,
and Gt = {Ê, T̂} the two-element group generated by the time reversal operator
T̂ [2]. The classification of the twelve most obvious [3] local order parameters is
given in Table 1. Being expressed as Stevens equivalents, all order parameters
are even under space inversion. The notation ”g” and ”u” in Table 1 refers to
their parity under time reversal.

About 30 years of work on one of the most intensively studied f -electron
systems has not brought clarification: the order is still ”hidden” [1]. As we are
going to describe, theoretical progress has long been held up by the ambiguity
of experimental findings on apparently heterogeneous samples. However, crucial
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Table 1: Symmetry classification of the local order parameters [4] for B = 0
(D4h notations [2], overline means symmetrization [5]).

sym (g) operator sym (u) operator

A1g E A1u JxJyJz(J2
x − J2

y )

A2g JxJy(J2
x − J2

y ) A2u Jz

B1g O2
2 B1u Txyz = JxJyJz

B2g Oxy = JxJy B2u T β
z = Jz(J2

x − J2
y )

Eg {Oxz,Oyz} Eu {Jx, Jy}

recent experiments [6, 7] allow to infer what the equilibrium properties of ideal
samples of URu2Si2 would be.

From the earliest neutron scattering experiments [8], the issue has been com-
plicated by the observation of apparent f -electron micromagnetism. Ascribing
the magnetic moments to the bulk of the sample, the observations indicated two-
sublattice Q = (0, 0, 1) antiferromagnetism of U 5f -shell moments of O(0.01µB)
directed along the tetragonal fourfold axis z in the low-T (T < T0) phase.
Though the nominal value of the ordered moment m was two orders of mag-
nitude lower than the paramagnetic moment, this seemed to conform to the
general idea that micromagnetism is the canonical behavior of f -electron sys-
tems on the borderline between the non-magnetic (heavy fermion) Kondo state
and RKKY magnetism [9]. According to this view, URu2Si2 might have been
put in the same class as UPt3 or CeAl3 [10].

Many previous ideas about URu2Si2 were based on the assumption that
antiferromagnetism with micro-moments is a static phenomenon, and it is an
intrinsic feature of the T < T0 phase. Since the ordering of small moments
could not account for the large thermal anomalies at the 17K transition, it was
assumed that the staggered dipole moment m is a secondary order parameter,
being induced by the primary ordering of an un-identified full-amplitude order
parameter ψ (the hidden order). This would require that antiferromagnetism
has the same symmetry as the hidden order, i.e., ψ should break time reversal
invariance and share the spatial character ofm under the symmetry classification
according to the tetragonal point group D4h [11]. With these assumptions, the
Landau free energy functional would contain a term −mψ, generating m 6= 0
whenever the primary ψ 6= 0. This is a scenario which we are going to discard,
for the reasons given below, and further in Sec. 2.

The intimate connection between hidden order and micromagnetism looked
always somewhat suspicious because the variability (0.017− 0.04)µB of the an-
tiferromagnetic moment was too large to be associated with nominally good-
quality samples, and because the onset of micromagnetism did not exactly co-
incide with T0. Susceptibility and NMR under pressure give an insight: though
the sample-averaged sublattice magnetization grows with pressure, it seems to
arise from the increase in the number of magnetic sites, not from changing the
magnetic moment at a given site [12]. This points to the possibility that the ap-
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parent micromagnetism is an attribute of heterogeneous samples, and should be
understood as ordinary antiferromagnetism of a small (∼ 1%) volume fraction
in samples which for some reason always include a minority phase [13].

The argument was clinched by high-pressure µSR experiments: hidden or-
der is non-magnetic, and antiferromagnetism of at least O(0.1µB) ionic moments
appears at a first-order transition at ptr ≈ 0.6GPa [6]. There are two thermo-
dynamic phases, a non-magnetic phase with 〈ψ〉 6= 0 and 〈m〉 = 0, and the
antiferromagnetic phase with 〈m〉 6= 0 and 〈ψ〉 = 0. At ambient pressure, the
magnetic (〈m〉 6= 0) phase is slightly less stable than the phase with hidden order
[14]. However, large-amplitude antiferromagnetism is stabilized at hydrostatic
pressures p > 0.6GPa following a first order non-magnetic-to-magnetic transi-
tion. In a range of low hydrostatic pressures, the nature of the low-temperature
phase remains the same as in ambient conditions: ψ 6= 0 and m = 0. The
situation is, of course, different if we apply fields which lower the symmetry of
the system: magnetic field B, or uniaxial stress σ.

In the following Sections, we discuss the effect of uniaxial stress, and of
magnetic field, on the ordered phases of URu2Si2. We will deduce that the low-
pressure zero-field order must be staggered octupolar order of either B1u or B2u

octupoles (Sec. 2). The overall appearance of the temperature - magnetic field
phase diagram will be explained (Sec. 3). Finally, the general arguments will
be illustrated by the results obtained from a new crystal field model (Sec. 4).

2 Octupolar order

In this Section, we argue that the experimental evidence presented in Refs. [6, 7]
unambiguously shows that the ”hidden order” of URu2Si2 is alternating octupo-
lar order with Q = (0, 0, 1). Here we restrict our attention to the strictly local
(on-site) order parameters [15] listed in Table 1. Two-site quadrupole–spin and
three-site spin–spin correlators could appear in the same symmetry class as
on-site octupoles [16]; the present argument does not differentiate these cases.

Let us recall the hydrostatic pressure – temperature phase diagram obtained
from high-pressure µSR experiments [6] (a phase diagram of the same shape re-
sults from our mean field theory, see Fig. 5, left). Hidden order 〈ψ〉 6= 0 is
the attribute of the low-pressure, low-temperature phase (p < ptr, T < T0(p)).
Though all samples show some micromagnetism, it can be safely concluded that
this is an extrinsic effect and in a perfect sample, hidden order should be non-
magnetic. Antiferromagnetism of at least O(0.1µB) ionic moments appears at
a first-order transition at ptr ≈ 0.6GPa . At p < ptr the hidden order onset
temperature T0(p), and at p > ptr the Néel temperature TN(p) are critical tem-
peratures for the hidden-order-to-paramagnetic, and the antiferromagnetic-to-
paramagnetic transitions, respectively; these meet the first order phase bound-
ary at a bicritical point. It follows that m and ψ are of different symmetry, and
the Landau free energy cannot contain a term mψ. The symmetry of ψ must
be in any case different from A2u(Q = (0, 0, 1)).

Regarding the absence of magnetism as an established fact, we can also
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exclude Eu (magnetic moments perpendicular to the tetragonal z-axis). The
remaining choices for the order parameter ψ are: quadrupolar (B1g, B2g, or
Eg), octupolar (B1u or B2u), hexadecapole (A2g), or triakontadipole (A1u) (see
Table 1). Quadrupole and hexadecapole moments are time reversal invariant,
while octupoles and triakontadipoles change sign under time reversal.

An important recent experiment allows to decide the time reversal character
of the hidden order. Yokoyama et al [7] carried out magnetic neutron scattering
measurement in the presence of uniaxial stress applied to a single crystal sample
either along, or perpendicular to the tetragonal axis. Stress σ ‖ (001) does not
produce significant change in magnetic moments. However, for stress σ ⊥ (001)
the staggered moment increases approximately linearly, reaching ∼ 0.25µB at
σ = 0.4GPa. In contrast to hydrostatic pressure, no threshold value is needed
to induce a magnetic moment; it appears as soon as the stress σ is finite.

Mechanical stress is time reversal invariant, thus it can produce magnetic
moments only from an underlying state which itself breaks time reversal in-
variance. This limits the choice of hidden order to B1u or B2u (octupolar),
or A1u (triakontadipoles). We emphasize that the choice of octupolar order is
essentially different from the previously assumed quadrupolar order [17, 18, 19]
which does not break time reversal invariance. Additional evidence in favor of
the time reversal invariance breaking character of ψ comes from NMR [20], and
inelastic neutron scattering at high fields [21].

We will show that the properties of URu2Si2 can be described well with the
assumption of octupolar order. This would make URu2Si2 the third well-argued
case of primary octupolar order in an f -electron system (the first two cases being
NpO2 [22] and Ce1−xLaxB6 [23]). Within the limits of our argument, either
B1u or B2u would reproduce the basic effect of stress-induced large-amplitude
antiferromagnetism. On the other hand, we rule out A1u triakontadipoles as
order parameters.

First, we consider stress applied in the (100) direction. σ ‖ (100) lowers the
symmetry to orthorombic D2h (see Appendix A). Under D2h , Atetr

2u → Borth
1u and

Btetr
2u → Borth

1u , so the order parameters T β
z and Jz become mixed (Table 4). A

state with spontaneous T β
z octupolar order carries Jz magnetic dipole moments

as well [24], accounting for the observations [7].
An alternative way to derive this is by inspecting the relevant terms of the

Landau potential for the undistorted tetragonal phase (the operators in the
equations below have the meaning given in Table 1). Choosing B2u octupolar
order parameter, consider the mixed third order invariant

I(A2u⊗B1g⊗B2u) = c1Jz(0)T β
z (Q)O2

2(−Q)

+c2Jz(Q)T β
z (−Q)O2

2(0) . (1)

Generally, c1 6= 0 and c2 6= 0. For our present purpose, the second term
matters. A uniform stress σ ‖ (100) induces uniform (q = 0) O2

2 quadrupole
density [25] which couples the staggered (q = Q) B2u octupole order parame-
ter to the Jz dipole density with q = −Q, i.e., the same spatial modulation.
Neutron scattering shows that stress-induced antiferromagnetism has the same
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simple two-sublattice structure with Q = (001) that was previously ascribed to
micromagnetism, thus the periodicity of the hidden octupolar order must be the
same.

The actual stress-dependence of antiferromagnetic polarization depends on
microscopic details. Fig. 1 illustrates the general behavior for a crystal field
model which we describe in detail later.

1

0.5

< T     >z
β

< J    >z

T=0

0

2

4

6

8

20

σ

Figure 1: Stress-induced magnetic moment in the octupolar phase, based on the crystal

field model described in Sec. 4. Thick line: 〈Mz〉 staggered magnetization, thin line: 〈T β
z 〉

octupolar moment, as a function of the uniaxial pressure σ ‖ [100] (σ in arbitrary units).

Stress applied along the z-axis induces O0
2 which transforms according to the

identity representation A1g, thus it does not appear in the invariants, and it is
not predicted to induce magnetism. This is in qualitative accordance with the
observation that for σ ‖ (001) the induced moments are an order of magnitude
smaller than for σ ‖ (100). We believe that the fact that these moments are not
exactly zero, is due to non-ideality of the sample, as micromagnetism itself is.

The situation is less clear with varying the direction of stress in the σ ⊥ (001)
plane. Experiments find that the stress-induced antiferromagnetic moment is
essentially the same for σ‖(110) as for σ‖(100) [7]. Taken in itself, stress-induced
antiferromagnetism would be as easy to understand for σ‖(110) as it was for
σ‖(100). Namely, the invariant expansion of the Landau potential contains also

I(A2u⊗B2g⊗B1u) = c3Jz(0)Txyz(Q)Oxy(−Q)

+c4Jz(Q)Txyz(−Q)Oxy(0) . (2)

σ‖(110) induces uniform Oxy quadrupolar polarization. Assuming that the
hidden (octupolar) order is Txyz(−Q), it is coupled to Jz(Q), the same kind
of antiferromagnetism as we found before. An alternative way to arrive at the
same result is by observing that σ‖(110) lowers the symmetry to orthorombic,
under which Txyz and Jz belong to the same irrep (Appendix A, Table 5).
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We have to emphasize, though, that assuming a homogeneous system, either
we have an explanation for the effect at σ‖(100) (with T β

z octupolar order), or
for σ‖(110) (with Txyz octupolar order), but not for both. Under tetragonal
symmetry, T β

z and Txyz belong to different irreps, and therefore these orders
cannot coexist. At the level of our present argument, the problem cannot be
resolved. We believe that it is not merely a difficulty with our model but it
points to a genuine feature of URu2Si2. We speculate that the T β

z and Txyz

orders are sufficiently near in energy, and so samples tend to contain domains
of both.

We note that the A1u triakontadipole JxJyJz(J2
x − J2

y ) (see Table 1) would
not give rise to stress-induced magnetism and is therefore not a suitable choice
as order parameter.

It is worth pointing it out that our present scenario offers an explanation why
micromagnetism is always present. This may seem paradoxical since if it were
connected with a minority phase only, it would be reasonable to expect that
some preparation techniques give single-phase samples, i.e., completely non-
magnetic ones. However, we ascribe antiferromagnetism also to the polarization
of the primary octupolar phase in a stress field. It can be assumed that the
environment of impurities and crystal defects always contains regions with the
local stress oriented perpendicularly to the tetragonal main axis, thus there is
always some local antiferromagnetism.

3 Magnetic field

There have been extensive studies of the effect of an external magnetic field on
the phase diagram of URu2Si2 [26, 27]. The system is relatively insensitive to
fields applied in the x–y plane, while fields B ‖ ẑ have substantial effect: hidden
order can be suppressed completely with Bcr,1 = 34.7T. The phase boundary in
the B–T plane is a critical line, thus hidden order (or its suitable modification)
breaks a symmetry also at B 6= 0. At somewhat higher fields, an ordered phase
appears in the field range Bcr,2 = 35.8T < B < Bcr,3 = 38.8T. One possibility is
that it is the re-entrance of the B < Bcr,1 hidden order; however, we are going to
argue that the high-field order has different symmetry than the low-field order.

The difference between the previously suggested quadrupolar order [17], and
our present suggestion of octupolar order, is sharp at B = 0 [28]. However, a
B 6= 0 magnetic field mixes order parameters which are of different parity under
time reversal (Table 2). The reason is that switching on a field B ‖ ẑ lowers the
point group symmetry from D4h⊗Gt to an 8-element group isomorphic (but not
identical) to C4v [2].

Switching on a field B ‖ ẑ, geometrical symmetry is lowered from D4h to
C4h. However, the relevant symmetry is not purely geometrical. Though taken
in itself, reflection in the xz plane σ̂v,x is not a symmetry operation (it changes

the sign of the field), combining it with time reversal T̂ gives the symmetry
operation T̂ σ̂v,x. The same holds for all vertical mirror planes, and C2 ⊥ ẑ axes,
thus the full symmetry group consists of eight unitary and eight non-unitary
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symmetry operations [2]

G(Bz) = C4h + T̂ σ̂v,xC4h . (3)

We may resort to a simpler description observing that

G̃ = C4 + T̂ σ̂v,xC4 (4)

is an important subgroup of G(Bz), and we can base a symmetry classification
on it. The multiplication table of G̃ is the same as that of C4v, and therefore the
irreps can be given similar labels. It is in this indirect sense that the symmetry
in the presence of a field B ‖ ẑ can be regarded as C4v (a convention used in
[5]). The symmetry classification of the local order parameters valid in B ‖ ẑ
is given in Table 2. The results make it explicit that the magnetic field mixes
dipoles with quadrupoles, quadrupoles with certain octupoles, etc.

Table 2: Symmetry classification of the lowest rank local order parameters for B ‖ ẑ (nota-
tions as for C4v [2])

Symmetry basis operators
A1 1, Jz

A2 JxJy(J2
x − J2

y ), JxJyJz(J2
x − J2

y )
B1 O2

2, T β
z

B2 Oxy, Txyz

E {Jx, Jy}, {Oxz,Oyz}

In a field B ‖ ẑ, there can exist ordered phases with four different local sym-
metries: A2, B1, B2, and E. The zero-field B2u-type T β

z octupolar order evolves
into the B1-type T β

z –O2
2 mixed octupolar–quadrupolar order. If the octupolar

order is staggered, it mixes with similarly staggered quadrupolar order: this
follows from the first line of Eqn. (1) [29]. The character of the low-field phase
is indicated in the ground state phase diagram in Figure 2 (all numerical results
are derived from a crystal field model described in Sec. 4, but the validity of
our general arguments is not restricted to that particular model). The gradual
suppression of octupolar order under field applied in a high-symmetry direction
is a well-known phenomenon; a similar result was derived for f3 ions in [30]. In
our calculation, the octupolar phase is suppressed at Bcr,1 ≈ 34.7T (Figure 2).

Although we are not familiar with experimental results for the combined ef-
fect of hydrostatic pressure and magnetic field, it should follow from our scheme
that a critical surface is bounding the phase with staggered B1 octupolar–
quadrupolar order until at sufficiently high pressures, the critical surface termi-
nates by a bicritical line. The high-pressure low-field phase has alternating Jz

order like in the zero-field case. Hydrostatic pressure does not change the sym-
metry of the system, but it can change the numerical values of the coefficients
in the expansion of the Landau free energy in terms of invariants. Therefore,
generally speaking, we expect continuity with the results found for p = 1atm
up to a threshold value of the pressure where a first order transition to a phase
with different symmetry may take place.
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Figure 2: The high-field part of the T = 0 phase diagram of the multipolar model (B in

units of T (Tesla)). Vertical axis: 〈T β
z 〉 for the low–field phase, and 〈Ozx〉 for the high-field

phase. The field-induced mixing of the order parameters is shown within the shaded areas.
The overall appearance of the T -B (inset, T in units of K) phase diagram is very similar.
(The critical temperature of the E phase is scaled up 3-fold).

Let us return to the case of B ‖ ẑ field effects at ambient pressure. The story
of the gradual suppression of theB1 octupolar–quadrupolar phase is closed by it-
self; it might have happened that there is only one ordered phase, surrounded on
all sides by the disordered (A1) phase. However, as shown in Table 2, there are
order parameters of different (A2, B2, E) symmetries; it depends on microscopic
details whether such orders are induced by sufficiently high fields. If they are,
they cannot coexist with B1, so the corresponding domains in the Bz–T plane
must be either disjoint from the B1, or, if they are pressed against each other,
separated by a first order phase boundary. Our Figure 2 illustrates the former
case, where an E phase with mixed quadrupolar–dipolar order (see Table 2)
is separated from the low-field B1 phase by a narrow stretch of the disordered
phase. We observe that this model result bears a close resemblance to the phase
diagram determined by high-field experiments [26, 27]. We note that high-field
transport experiments add more phase boundaries to those determined by static
experiments [1]. However, it is often found that transport anomalies delineate
regions which, while showing interesting differences in the dominant conduction
mechanism, still belong to the same thermodynamic phase. Therefore, we take
the view that the boundaries shown in Figure 2 are the most robust features of
the phase diagram, and the first step should be identifying the nature of these.

An interesting possibility to recover a phase diagram of the same shape
would be to identify the high-field phase as the ”re-entrance” of the low-field B1

phase. This possibility was suggested in [1]. However, our present model study
does not predict re-entrance.
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4 Crystal field model

The previous arguments were based on a symmetry classification of the or-
der parameters, and the conclusions are independent of the details of the mi-
croscopic models that allow the emergence of the ordered phases (in particular,
zero-field octupolar order) which we postulate. However, many physical prop-
erties (foremost the temperature dependence of the susceptibility, but also the
specific heat) were fitted with apparent success by making different assump-
tions about the nature of the zero-field hidden order (either quadrupolar order
of 5f2 shells [17, 18, 31], or non-conventional density waves [32]). Therefore it is
important to show that our work is not in conflict with findings for which alter-
native explanations had been suggested but offers fits to the results of standard
measurements, which are at least comparable, and in some cases better, than
previous results.

Here we assume that equilibrium phases other than the superconducting
phase, can be described in terms of localized f -electrons, with stable 5f2 shells.
We note that for many other interesting f -electron systems (e.g., CeB6 and
Pr-filled skutterudites) the localized-electron description of multipolar ordering
works well, in spite of the fact that for certain physical quantities, consideration
of the itinerant aspects of f -electron behavior is indispensable.

It is generally agreed [33] that the crystal field ground state is a singlet, and
that the salient feature of the level scheme is three low-lying singlets. Three
singlets are sufficient to account for low-energy phenomena. It is found that
further two states have to be taken into account to get a satisfactory fit for the
susceptibility up to room temperature. We note that the nature of the high-field
ordered phase has not been discussed in previous crystal field theories.

The backbone of our crystal field model is the inclusion of the same three
singlets as in the works of Santini and coworkers [17, 18, 31], but in different
order (Table 3, Fig. 3 (left)). The ground state is the |t1〉 singlet, and |t2〉 an
excited state lying at ∆2 = 100K. |t1〉 and |t2〉 are connected by a matrix element
of Jz, as observed by neutron inelastic scattering [8]. The lower-lying singlet |t4〉
is connected to the ground state by an octupolar matrix element: this feature
allows the existence of induced octupolar order as the strongest instability of
the system (Fig. 3, right). We remark that while other level schemes may also
allow octupolar order if one assumes a stronger octupole–octupole interaction,
our assumption seems most economical.

Table 3: Tetragonal crystal field states used in the model

state form symmetry energy[K]

|t2〉 1/
√

2(|4〉 − |−4〉) A2 100

|d±〉 a |±3〉 −
√

1 − a2 |∓1〉 E 51

|t4〉 1/
√

2(|2〉 − |−2〉) B2 45

|t1〉 b(|4〉 + |−4〉) +
√

1 − 2b2 |0〉 A1 0

Finally, as in previous schemes, at least two further states are needed to fit
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βT z

zJ

Figure 3: In the low-field regime, the minimum model consists of three singlets. Left: The
field-dependence of the levels. Right: relevant multipole matrix elements.

magnetization data up to 300K. We found it useful to insert one of the doublets
(|d±〉). This is an alternative to models with five singlets [17, 31]. As we are
going to see, fits to standard macroscopic measurements are no worse in our
scheme than in previous ones. However, our scheme has the advantage that it
accounts for the high-field observations. We show the field-dependence (B ‖ ẑ)
of the crystal field levels in Fig. 4. The salient feature is the crossing of the
(mildly field-dependent) singlet ground state with one of the levels derived from
the splitting of the doublet at a field strength lying between the critical fields
Bcr,2 and Bcr,3. The crossing levels are connected by matrix elements of E
operators (Table 2). Consequently, we find a high-field E phase where {Jx, Jy}-
type transverse dipolar order is mixed with {Ozx,Oyz}-type quadrupolar order
(see Figure 2).

Commenting on differences between our crystal field scheme (Table 3 where
we use a = 0.98, b = 0.22) and previously suggested ones, we note that unam-
biguous determination is very difficult even if an intense experimental effort is
undertaken, as in the recent case of Pr-filled skutterudites. By and large we
agree with Nagano and Igarashi [34], who argue that the crystal field potential
of URu2Si2 is not known in sufficient detail yet. We complied with constraints
which appear well-founded, as e.g. the neutron scattering evidence by Broholm
et al [8], but otherwise we adjusted the model to get low-field octupolar order
for which we found model-independent arguments. Level positions were ad-
justed to get good overall agreement with observations but we did not attempt
to fine-tune the model, neither did we check for alternative schemes with less
straightforward parametrization.

We use the mean field decoupled hamiltonian

HMF = ∆1|t4〉〈t4| + ∆2|t2〉〈t2| + ∆3

∑

α=+,−

|dα〉〈dα|

10
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|t1>

|t2>
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Figure 4: Left: The magnetic field dependence of the single-ion levels in the extended five-
state model used up to high values of T and B. Right: Additional multipole matrix elements
due to the addition of the doublet state to the crystal field levels, which are relevant for the
high-field phase.

−gµBBJz + λoct

〈

T β
z

〉

T β
z − λquad 〈Ozx〉Ozx (5)

where g = 4/5, and the octupolar mean field coupling constant λoct is meant
to include the effective coordination number; similarly for the quadrupolar cou-
pling constant λquad. We assume alternating octupolar order, and uniform Ozx

order; the result would be the same if the high-field quadrupolar order is also
alternating. We do not introduce independent O2

2 or {Jx, Jy} couplings, never-
theless 〈O2

2〉 6= 0 in the B1 phase, and 〈Jx〉 6= 0 in the E phase.
AtB = 0, the only non-vanishing octupolar matrix element is C = 〈t1|T β

z |t4〉 ≈
8.8. Octupolar order is driven by the large C: assuming λoct = 0.336K we get
the critical temperature T0(B = 0) = 17.2K for T β

z -type antiferro-octupolar
order. Using a similar estimate, we find λNp

oc ≈ 0.2K for NpO2 which orders
at 25K [22]. The order-of-magnitude correspondence between two documented
cases of octupolar order shows that our present estimate of the octupolar cou-
pling strength is not unreasonable.

(5) was solved for all temperatures and fields Bz. We find that the octupolar
phase is bounded by a critical line of familiar shape (Fig. 2, inset), which has
its maximum T0 = 17.2K at Bz = 0, and drops to zero at Bcr,1 = 34.7T. The
transition remains second order through-out; we did not hit upon a tricritical
point, though we are aware of no reason of why it should not have appeared.

Similarly, the ground-state amplitude of the octupolar order is a monotoni-
cally decreasing function of Bz (Fig. 2).

The restricted model with three singlets (Fig. 3) offers two basic choices.
In the absence of symmetry-lowering fields, the Landau expansion of the free
energy in terms of the order parameters is

F = αO(T, p)〈T β
z 〉2 + βO(T, p)〈T β

z 〉4 + αM (T, p)〈Jz〉2 + βM (T, p)〈Jz〉4 + ... (6)
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Note that because of the tetragonal symmetry, the free energy expansion does
not contain the term 〈T β

z 〉〈Jz〉. It follows that the possible ordered phases can be
(A) 〈T β

z 〉 6= 0 and 〈Jz〉 = 0 or (B) 〈T β
z 〉 = 0 and 〈Jz〉 6= 0. This is in agreement

with the experimental finding [6] that (A) is the low-pressure phase, and (B) is
the high-pressure phase, and they are separated by a first-order boundary.

This canonical case (qualitatively agreeing with the schematic phase diagram
shown in [6]) is illustrated in Fig. 5 (left). It was derived from Eqn. (5) using
an ad hoc model assumption about the pressure dependence of the crystal field
splittings ∆1 and ∆2 (Fig. 5, right) [35]. The shape of the phase boundaries, and
in particular the slope of the first order line, could be fine-tuned by adjusting the
pressure dependence of the crystal field parameters, but the overall appearance
of the phase diagram: two critical lines meeting at a bicritical point, which is
also the end-point of a first-order boundary, is generic.

T z
β

J z

NT    (p)OT    (p)

0

10

20

30

T

0.1 0.2
p

∆
1

2
∆

0

50

100

0.1 0.2 0.3
p

Figure 5: Left: The pressure dependence of the critical temperature of the octupolar and the
dipolar antiferromagnetic phases (T0(p) and TN (p), respectively). The first-order boundary
between the two ordered phases is an interpolation through the calculated points. Right:
model assumption about the pressure dependence of the crystal field splittings ∆1 and ∆2.

The stress dependence of the induced antiferromagnetic moment (Figure 1)
was determined in a similar calculation, adding the term −σO2

2 to the Landau
potential, and solving the self-consistency equations for 〈Jz〉 and 〈T β

z 〉. σ in
this calculation has the character of uniaxial stress, but an additional set of
experimental data would be needed to determine its absolute scale.

Next, we consider the results of some standard low-field measurements. This
was not the primary purpose of our work but rather serves as a check. The
quadrupolar model [17] obtained a reasonably good fit for the temperature de-
pendence of the linear and non-linear susceptibility in a range of temperature,
and we have to prove that our model yields a comparably good description on
a completely different microscopic basis.

The octupolar transition shows up as a discontinuity of the linear suscep-
tibility (Figure 6). This character of the χ1 anomaly is expected from gen-
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Figure 6: Linear susceptibility per site (in µB/T) on extended temperature scale (left), and
in the vicinity of the octupolar transition (right). The dashed line gives the single-ion result.

eral arguments [36]. While the low-temperature behavior, including the regime
around T0, is satisfactorily described by the three-state model (Fig. 3), fitting
the susceptibility up to room temperature (Fig. 6, left) requires the five-state
model (Fig. 4). One of the hallmarks of the hidden-order transition of URu2Si2
is the strong jump of the non-linear susceptibility χ3 [37]. The shape of the
calculated anomaly (Figure 7, left) corresponds rather well to the experimental
result.
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0.001
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Figure 7: Left: The temperature dependence of the nonlinear susceptibility χ3 in the vicinity
of the octupolar transition. The dashed line is an interpolation through the calculated points.
Right: the magnetization curve at T = 0 (M in units of µB).

Next we discuss the high-field behavior at B > Bcr,1, and interpret the dis-
joint high-field phase observed in experiments [26, 27] as a mixed quadrupolar–
dipolar phase (the E phase in Fig. 2). We exploit the field dependence of the
ionic levels in the five-level model (Table 3, Fig. 4). The single-ion levels t1
and d− would cross at Bcross = 37.3T. Since |t1〉 and |d−〉 are connected by E
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operators including Ozx (see Figure 4, right), a range of fields centered on Bcross

is certain to favour {Ozx,Oyz} quadrupolar order, and simultaneous {Jx, Jy}
dipolar order. We chose a weak quadrupolar interaction λquad = 0.054K in
Eqn. (5); this gives quadrupolar order between the critical fields Bcr,2 = 35.8T
and Bcr,3 = 38.8T. The amplitude of quadrupolar order is not small (Fig. 2)
but the ordering temperature is low (∼ 1K) because the coupling is weak. The
E phase shows up as the steep part of the magnetization curve in Fig. 7 (right).
For λquad = 0 we would have a jump-like metamagnetic transition at B = Bcross.

We are aware of an unsatisfactory feature of the calculated magnetization
curve. Though it is clear that our theory involves three critical fields: Bcr,1,
Bcr,2, and Bcr,3, at the lowest of these the anomaly is so weak that it does not
show up on the scale of Figure 7 (right). We get a single-step metamagnetic
transition distributed over the width of the high-field quadrupolar phase. The
overall height of the step is right, but we do not recover the three-step structure
of the transition observed by Sugiyama et al [38].

5 Discussion and Conclusion

There have been many attempts to explain the non-superconducting phases
of URu2Si2. Though the behavior of f -electrons in this system certainly has
itinerant aspects, or perhaps URu2Si2 is on the verge of a localized-to-itinerant
transition, arguing on the basis of a simple localized electron model can lead
to useful results. Namely, crystal field theory conforms to a general symmetry
classification of the equilibrium phases, which is expected to apply to a wider
range of models, including suitably defined Kondo lattice, or Anderson lattice,
models. Our main interest lies in cross-effects like the mixing of order parameters
in the presence of external magnetic field, or mechanical stress. Our conclusions
rely on symmetry reasoning, and only numerical details depend on the choice
of the crystal field model which we use to illustrate the general arguments.

The identification of the low-pressure, low-temperature hidden order of URu2Si2
is of basic interest. Starting from the high-temperature tetragonal phase, a
symmetry-breaking transition can lead to an ordered phase with the following
choices for the local order parameter: A2u and Eu dipoles, B1g, B2g, and Eg

quadrupoles, B1u, and B2u octupoles, a A2g hexadecapole, and an A1u triakon-
tadipole [4].

It was always clear that the primary order parameter of URu2Si2 cannot be
dipolar. The possibility of quadrupolar ordering has been extensively discussed
[17]. Higher multipoles have been mentioned in a general context [16, 21], but
have not been studied in detail.

A recent µSR study [6] finds that the symmetry of hidden order is differ-
ent from A2u(Q) which is the symmetry of the high-pressure antiferromagnetic
phase (the same structure was ascribed to the supposed ”micromagnetism” of
URu2Si2, which is now understood to be extrinsic). The present experimental
status is that the intrinsic low-pressure behavior of URu2Si2 is purely non-
magnetic. Furthermore, a number of recent experiments proves that the hidden
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order breaks time reversal invariance, so it cannot be quadrupolar [20, 21, 7].
In particular, Yokoyama et al [7] found that uniaxial stress (which is time rever-
sal invariant) induces large-amplitude antiferromagnetism, which breaks time
reversal invariance. It is clear that stress must have acted on a medium which
itself was non-invariant under time reversal: it must have been the octupolar
phase [39]. Independently, the analysis of high-field inelastic neutron scattering
data led to the conclusion that hidden order breaks time reversal invariance,
and may be octupolar [21].

We emphasize that stress-induced antiferromagnetism arises only if the stress
is uniaxial, and perpendicular to the (001) direction. For tetragonal symmetry,
octupoles (B1u and B2u), and dipoles (A2u and Eu) are of different symmetry
and therefore they do not mix. It follows that hydrostatic pressure cannot induce
antiferromagnetism unless the pressure is high enough to lead to a completely
different (purely dipolar) phase via a first-order phase transition. This was
found in Ref. [6]. In contrast, uniaxial pressure perpendicular to the tetragonal
main axis lowers the symmetry to orthorombic, allowing the mixing of dipoles
and octupoles.

We postulated that the hidden order is T β
z staggered octupolar order (Sec. 2).

Uniaxial pressure σ‖(100) leads to the appearance of Jz dipolar order of the
same periodicity. The model works the same way if we postulate Txyz staggered
octupole order, in which case a stress σ‖(110) gives Jz antiferromagnetism.
Since the octupoles T β

z and Txyz belong to different one-dimensional irreps of the
tetragonal symmetry (B2u and B1u, respectively), in our theory a homogeneous
system can show only one of the stress-induced effects. We hypothesized that
the observed near-equivalence of the stress effect in (100) and (110) directions
[7] reflects the presence of both kinds of order in a multi-domain structure.

The same assumption about T β
z octupolar order explains the behavior in

applied magnetic field (Sec. 3). A field B‖(001) mixes T β
z octupoles with O2

2

quadrupoles. Symmetry breaking is well-defined in the presence of magnetic
field, and the transition to hidden order (now a mixed octupolar–quadrupolar
order) remains second order up to a critical field Bcr,1 where T0(B) → 0.

We illustrated the symmetry arguments on the example of a crystal-field
model (Sec. 4). The model has two versions: low-energy phenomena can be
described by using three low-lying singlets, while for high energies (or fields, or
temperatures) we need five states (the previous three singlets plus a doublet).
The three singlets are the same as in Santini’s work, but their sequence was
chosen to give an octupolar matrix element between the ground state and the
first excited state. The presence of the doublet level is not essential at low
fields (and low temperatures) but it splits in a magnetic field B‖(001), and for
a range of high fields, even weak quadrupolar coupling can give quadrupolar
order which competes with the low-field octupolar order. We argued that the
high-field order observed between 35T and 38T [26, 27] is of quadrupolar nature,
with a symmetry different from that of the low-field order.

To conclude, we presented arguments showing that octupolar order of either
B2u or B1u symmetry is the zero-field ”hidden order” of URu2Si2 at ambient
conditions. We limited the discussion to strictly on-site order parameters in a lo-
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calized electron model with stable 5f2 valence. However, within this restriction
our scenario is compatible with the present knowledge about the phase diagram
in the temperature–pressure–field space. The time reversal invariance breaking
nature of the order is manifest in the effect that uniaxial pressure applied in
certain directions can induce large-amplitude antiferromagnetism.
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A Orthorombic symmetry

Quadrupolar moments couple to external stress. For instance, applying stress
σ‖(100), O2

2 quadrupolar moments are induced, while σ‖(110) induces Oxy. At
the same time, the application of uniaxial stress lowers the symmetry from the
tetragonal D4h to one of its subgroups, changing the symmetry classification of
all order parameters. This effect is described below.

When we apply uniaxial pressure in direction (100), the previous C4, S4, C
′′

2

and σv cease to be symmetry operations and the residual symmetry is described
by the group D2h. The corresponding classification of the order parameters is
given in Table 4. We observe that under the new symmetry, the T β

z octupolar
and the Jz dipolar moments mix with each other, and this means that if the
system possesses spontaneous staggered T β

z octupolar order, applying σ‖(100)
stress induces staggered Jz dipolar moments.
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Table 4: Symmetry classification of the local order parameters for σ‖(100). The subscripts

g and u mean the even and odd under time reversal. Hα
z = JxJy(J2

x − J2
y ) is one of the nine

hexadecapoles.

D2h

A1g O2
2

B1g Oxy, Hα
z

B2g Ozx

B3g Oyz

A1u Txyz

B1u T β
z , Jz

B2u Jx

B3u Jx

When the uniaxial pressure is applied in (110) directions, it induces Oxy

quadrupoles. Now C4, S4, C
′

2 and σd have to be omitted from the symmetry
group which is again the D2h point group, only comprised of different elements
than in the σ‖(100) case. For the present σ‖(110) case, the symmetry classi-
fication of the order parameters is shown in Table 5. Now the Txyz octupolar
moment mixes with the Jz dipolar moment (if Txyz is staggered, so is Jz).

Table 5: Symmetry classification of the local order parameters for σ‖(110). g and u refer to
parity under time reversal.

D2h

A1g Oxy

B1g O2
2 , Hα

z

B2g Oyz −Ozx

B3g Oyz + Ozx

A1u T β
z

B1u Txyz, Jz

B2u Jx + Jy

B3u Jx − Jy

When we apply uniaxial pressure along the tetragonal main axis (001), there
is no symmetry reduction, the original D4h symmetry classification of the order
parameters (Table 1) remains valid. Neither the Txyz nor the T β

z octupolar
moments can induce Jz magnetic moments, since they all correspond to different
irreducible representations of the D4h point group. An analogous statement
holds for the staggered moments.
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